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We report experimental observation of an instability in a Couette-Taylor flow of a polymer fluid in a thin gap
between two coaxially rotating cylinders in a regime where their angular velocity decreases with the radius
while the specific angular momentum increases with the radius. In the considered regime, neither the inertial
Rayleigh instability nor the purely elastic instability is possible. We propose that the observed “elastorota-
tional” instability is an analog of the magnetorotational instability which plays a fundamental role in astro-
physical Keplerian accretion disks.
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I. INTRODUCTION

Accretion is a fundamental process in astrophysics by
which protostellar objects and stars are formed. Due to grav-
ity, the interstellar gas collapses into thin disks differentially
rotating around accreting bodies. As angular momentum is
conserved, in order for the gas to further fall onto the central
object, angular momentum has to be transported out of the
system. Since the molecular viscosity in disks is very small,
the laminar Keplerian disk cannot loose its angular momen-
tum by frictional forces on astrophysically reasonable time
scales. The need for much larger, possibly turbulent angular
momentum transport was identified in Lynden-Bell �1� and
Shakura and Syunyaev �2�, although it remained unclear
what could make a hydrodynamically stable Keplerian flow
turbulent. In the 1990s, it was realized that a weak magnetic
field existing in accretion disks leads to a quickly growing
instability rendering the disks turbulent. This is the magne-
torotational instability �MRI� originally derived by Velikhov
�3� and Chandrasekhar �4� and rediscovered in astrophysical
context by Balbus and Hawley �5�.

During the last decade, considerable progress has been
made in understanding the effects of such instability on dif-
ferentially rotating flows. A sizable amount of analytic work
was devoted to linear analysis of instability thresholds �e.g.,
�6–8��. Extensive numerical simulations of the nonlinear
stage of the magnetorotational instability have also been per-
formed, e.g., �9–13�, however, it still remains a challenge to
address the ranges of scales relevant for real astrophysical
systems. Laboratory investigations of the magnetorotational
instability in liquid-metal experiments have been proposed
�e.g., �14–18�� and conducted �19,20�. However, large resis-
tivity of liquid metals complicates unambiguous laboratory
study of the magnetorotational instability. Recently, however,
the instability was observed in a Couette-Taylor liquid-metal
experiment where the helical rather than “standard” axial
magnetic field was applied by external coils �21�. The rel-
evance of this setting for Keplerian accretion disks is dis-
cussed in �22�.

In the present paper, we report a laboratory observation of
an analog of astrophysical magnetorotational instability in an

experiment using viscoelastic solutions of high molecular
weight polymers. In a certain range of parameters, the dy-
namic equations describing viscoelastic polymer fluids are
identical to the magnetohydrodynamic equations describing
conducting fluids or plasmas. This opens a way to investigate
the fundamental astrophysical instability in a simple labora-
tory setting.

To explain the physics of the instability, consider two
fluid elements rotating at different orbits and connected by
an elastic string �a magnetic field in accretion disks, a poly-
mer in our experiment�. The inner element rotates faster,
therefore, it is pulled back by the string. As a result, it loses
its angular momentum and falls closer to the center. The
outer fluid element is pulled forward, gains angular momen-
tum, and goes to a larger orbit. The fluid elements thus move
apart stretching the string even more, leading to the instabil-
ity.

Our interest to the problem was motivated by analytic
work of Ogilvie and Proctor �23� elucidating the analogy
between instabilities in Couette-Taylor flows of magnetic
and polymer fluids. �When our experiment was in progress,
we become aware of the new paper by Ogilvie and Potter
�24�, where this analogy is developed in more detail.� The
experiment provides an intriguing possibility to investigate
the regime of “elastorotational” instability and resulting elas-
torotational turbulence in non-Newtonian polymer fluids;
such regimes have not been experimentally studied before.
From a practical point of view, polymer solutions are rela-
tively inexpensive and nonhazardous. The experiment is suit-
able for undergraduate projects and lecture demonstration.

A. Magnetohydrodynamics and polymer fluid dynamics

The dynamics of a conducting fluid is described by the set
of magnetohydrodynamic �MHD� equations

�tv + �v · ��v = − �p + �B · ��B + ��v + F , �1�

�tB + �v · ��B − �B · ��v = �M�B , �2�

where v�x , t� is the velocity field, B�x , t� is the magnetic field
normalized by �4��, p is pressure, which includes the mag-
netic part, � is fluid viscosity, and �M resistivity. We assume
that the fluid is incompressible and the density is constant,
say �=1. The external force F�x , t� represents mechanisms
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driving the flow. We also assume cylindrical geometry with
the coordinates r, �, and z, where the steady state is de-
scribed by the azimuthal velocity field v��r�. For the gravi-
tational force, Fr�−1 /r2, the velocity field has the Keplerian
profile v��r��r−1/2.

As follows from Eq. �1�, the back reaction of the magnetic
field on the flow is described by the Maxwell electromag-
netic stress tensor TM

ij =BiBj. The evolution equation for this
tensor is derived from Eq. �2�, where we neglect small resis-
tivity �M

�tTM
ij + �v · ��TM

ij − TM
lj �lv

i − TM
il �lv

j = 0. �3�

The tensor TM
ij =BiBj obeying this equation is said to be “fro-

zen” into the flow. In the case of polymer fluids, the polymer
stress tensor TP

ij frozen into the flow should obey the same
equation.

In contrast with a magnetic fluid, there is no exact equa-
tion describing the dynamics of polymer solutions. However,
in the case when a solution is dilute, one can formulate the
constitutive equations based on general principles of
fluid dynamics �25,26�. The stress tensor can be represented
as a linear sum of the viscous stress of the solvent
Tij =���iv j +� jvi� and the stress TP

ij contributed by the poly-
mer. The polymer contribution should generally obey the
equation

TP
ij + �DtTP

ij = �P��iv
j + � jv

i� . �4�

Here, � is the relaxation time of the fluid element, which is
related to polymer elasticity, and Dt denotes the convective
derivative, as in Eq. �3�,

DtTP
ij � �tTP

ij + �v · ��TP
ij − TP

lj�lv
i − TP

il�lv
j . �5�

If the relaxation time � is very large compared to a char-
acteristic time of the flow, the second term on the left hand
side of Eq. �4� dominates, and the stress is advected by the
fluid. In the other limit, �→0, the polymer is not frozen
into the fluid—it rapidly relaxes to its nonstretched
equilibrium configuration and contributes to fluid viscosity,
TP

ij =�P��iv j +� jvi�. The dynamics of the velocity field in Eq.
�5� is given by the standard Navier-Stokes equation of mo-
tion

�tv + �v · ��v = − �p + � · TP + ��v + F . �6�

The systems �4�–�6� present the so-called B model of Old-
royd �26�, a constitutive system for dilute polymer solutions.

B. Ogilvie-Proctor model

The analogy of MHD and polymer fluid instabilities in the
Couette-Taylor regime was elucidated by Ogilvie and Proc-
tor �23�. Following their work, we change the variable:

TP
ij→ T̃P

ij =TP
ij +

�P

� �ij, where �ij is the Kronecker delta. The
momenta Eqs. �1� and �6� for magnetic and polymer fluids
now have identical forms

�tv + �v · ��v = − �pM + � · TM + ��v + F , �7�

�tv + �v · ��v = − �pP + � · T̃P + ��v + F , �8�

where the pressure terms ensure incompressibility of the
flows. The dynamic equations for the stress tensors are

�tTM
ij + �v · ��TM

ij − TM
lj �lv

i − TM
il �lv

j

= �M�Bi�2Bj + ��2Bi�Bj� , �9�

�tT̃P
ij + �v · ��T̃P

ij − T̃P
lj�lv

i − T̃P
il�lv

j = −
1

�
�T̃P

ij −
�P

�
�ij� .

�10�

These equations are identical except for the dissipation
terms—the magnetic field diffuses while the polymer stress
relaxes. However, if the magnetic Reynolds number Rm
		d2 /�M and the Weissenberg number Wi=�
�	 /��ln r�

	�	 are large �	 being the angular velocity and d the gap
between cylinders�, one can neglect the dissipation terms.

Denote R1 and R2 as the inner and outer radii, respec-
tively. When the gap is narrow, d /R
1, the shearing rate of
the basic flow, which is a Couette-Taylor flow, may be as-
sumed to be constant in the gap, �̇��v� /�r−v� /r=r�	 /�r
�const. The corresponding stationary solution of Eq. �10� in
coordinates �r ,� ,z� then has the form �23�

T̃P =
�P

� � 1 − Wi 0

− Wi 2Wi2 + 1 0

0 0 1
 . �11�

There is no exact correspondence of the tensor �11� to the
magnetic tensor TM, since Eq. �11� cannot be represented as
a product of two vector fields. However, one can introduce a
set of three auxiliary fields, B1, B2, and B3, such that

T̃P
ij = B1

i B1
j + B2

i B2
j + B3

i B3
j . �12�

In this representation, B1 and B2 have radial and azimuthal
components, while B3 is purely axial �23�,

B1,2 = ��P

2�
�1/2� − 1

Wi � �Wi2 + 1�1/2

0
 , �13�

B3 = ��P

�
�1/2�0

0

1
 . �14�

A general analysis of the instability requires expansion of
the nonlinear Eqs. �8� and �10� in small deviations from the
basic flow. Depending on what deviations are considered,
different “magnetic fields” play dominant roles. If one as-
sumes that the perturbations are axisymmetric �k�=0�, and
their wavevectors obey kzkr, then the azimuthal and radial
fields B1,2 are not relevant for the instability, and the domi-
nant role is played by the axial field B3, in direct analogy
with the corresponding magnetorotational instability.
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II. EXPERIMENT

In our experiment, a polymer fluid fills the gap between
two coaxial cylinders rotating in the same direction with dif-
ferent angular velocities. The gap is narrow, and the cylin-
ders are driven by the same motor with two different gears.
The gears are chosen as to approximate the Keplerian veloc-
ity profile 	�r��r−3/2 in the gap. �In fact, any profile where
the outer cylinder rotates slower than the inner one, but the
specific angular momentum of the outer cylinder is larger
than that of the inner one is suitable for the considered in-
stability.�

The outer diameter of the inner cylinder is 14�, the inner
diameter of the outer cylinder is 15.5�, and the height of the
cylinders is 2�. The outer cylinder is transparent and the flow
is visualized by adding a small amount of highly reflecting
Kalliroscope particles. The angular velocity of rotation can
reach 40 rad/s, which, for the Keplerian velocity profile
translates into a shearing rate �̇��v� /�r−v� /r�60 s−1.

For the polymer fluid, we chose an aqueous solution
of high molecular weight Polyethylene Oxide �MW
�7 000 000 g /mole� obtained from DOW Chemical. The
experiments were conducted at ambient temperature of
20 °C, although the temperature was not precisely con-
trolled. First, we checked that in the studied range of angular
velocities, the hydrodynamic flow without polymer additives
was stable. We then performed a series of experiments with
different concentrations of PolyOx. In each experiment, we
gradually increased the rotation velocity to obtain the insta-
bility threshold. The results of four representative experi-
ments are summarized in Table I.

No instability was observed for concentrations less than
about 0.2% by weight, but rather at very high rotation rates
turbulence set up at the ends of the cylinders where the
Keplerian profile is broken, and propagated over the whole
cylinder. At higher concentrations, however, the instability
did appear. At the polymer concentration of 0.25%, the most
unstable mode was a spiral v�k��exp�ikzz+ im�� with azi-
muthal wave number m= �1 and the axial wavelength �z
�21 mm. Due to symmetry, the spirals winding up and
down are equally probable. In different runs, the flow, there-
fore, spontaneously broke into regions of m=1 and m=−1,
as, e.g., in Fig. 1, left panel. The threshold for this instability
was about �̇c�0.25��5.6 s−1.

As the concentration was increased further, the most un-
stable mode became axisymmetric. In particular, in the case
of polymer concentration 0.5% by weight, the most unstable

mode had the wavelength �z�30 mm. The threshold for this
instability was �̇c�0.5��7.3 s−1. The result for 0.5% solu-
tion is shown in Fig. 1, right panel. In both cases, the insta-
bility was detectable by eye and the pattern was captured
with a generic digital camera.

To argue that the observed instability is analogous to the
magnetorotational instability, we performed another series of
experiments. This time, the gears at the cylinders were cho-
sen to set up either quasi-Keplerian 	�r��r−1.3 or “anti-
Keplerian” 	�r��r1.3 profiles, so that the shearing rate in the
anti-Keplerian profile has the inverted sign compared to that
of the Keplerian profile. This is done to exclude the so-called
elastic instability that can exist even for small Reynolds
numbers �Re= �̇d2 /�P� as long as the Weissenberg number
exceeds a certain threshold �27�. The elastic instability takes
energy from the elastic energy of the flow, and should not
essentially depend on the sign of �	 /�r, while for the MRI,
the sign of �	 /�r is crucial.

In the anti-Keplerian case, the only instability that could
exist is purely elastic instability. For the considered concen-
trations of PolyOx, we observed the instability in the quasi-
Keplerian case �analogous to the instability in the Keplerian
case�, however, we did not observed any instability in the
anti-Keplerian case, even when we increased the shearing
rates to three times as high as in the Keplerian counterpart.
This indicates that in our Keplerian case, the observed insta-
bility is driven by inertia and takes its energy from the ki-
netic energy of the flow. We, therefore, propose that the ob-
served “elastorotational” instability is analogous to the
magnetorotational instability.

III. DISCUSSION

Certain support for our observations is provided by the
Ogilvie-Proctor consideration outlined in previous sections.
We should be cautioned, however, that this model is to some
extent phenomenological. It is known that the polymers fluid
viscosity �p and relaxation time � are not constants, but they
strongly decrease as the shearing rate increases beyond
�̇��1 �the effect of shear-thinning�. Besides, a model with

TABLE I. Summary of experiments. C is the polymer concen-
tration. The relaxation time � is estimated from numerical simula-
tions of the Oldroyd-B model.

C
�%�

�̇c

�s−1�
�p

�Pa s�
�z

�mm� m Re Wi
�

�s�

0.5 7.3 0.19 30 0 14 4.4 0.57

0.375 6.5 0.11 29 �1 21 2.8 0.44

0.25 5.6 0.056 21 �1 36 1.9 0.34

0.19 Turb

(b)(a)

FIG. 1. �Color online� Elastorotational instability in viscoelastic
Couette-Taylor flow. Left: most unstable mode is m= �1 �C
=0.25%�. Right: most unstable mode is axisymmetric �C=0.5%�.
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single relaxation time is often not adequate, and one needs to
introduce a series of relaxation times describing the relation
between the shear rate and stress tensor. More essential,
however, is the fact that in our case the polymer solution
cannot be considered dilute for the used polymer concentra-
tions. The application of the theory is, therefore, limited.

We, however, found that the theory is in reasonable agree-
ment with the experiment if one substitutes the experimen-
tally measured value for unknown viscosity �p. Indeed, con-
sider the case of the axisymmetric instability observed at
polymer concentration 0.5%. We measured the shear viscos-
ity of the flow �p at the obtained critical shearing rate �̇c by
measuring the viscosity in a Bohlin rheometer using a system
of two coaxial cylinders—a scaled down copy of the experi-
mental setup. The inner cylinder was stationary, and the
outer cylinder rotated steadily, so that the shear rate in the
gap matched the shear rate in the experiment. The measured
viscosity was �p�0.5��190 mPa·s. As for the relaxation
time, it can be found for very low shearing rates using oscil-
lation measurements, giving the value of order �0�0.5�
	1.4 s. The relaxation time is, however, strongly shear-
thinned at the experimental shear rate, so its precise value is
difficult to evaluate.

We now substitute the experimental values of the critical
shearing rate �̇c, viscosity �p, and the wave vector kz, into
the linearized Oldroid-B equations. Such linearized equations
are derived in the limit of small but nonvanishing d /R in
�27�; they are bulky and not presented here. We solved these
equations numerically. The solution confirms that the axi-
symmetric instability with the observed parameters indeed
exists if the fluid relaxation time is �	0.6 s. This is a rea-
sonable number if shear-thinning is taken into account. With
this relaxation time, we estimate that the instability occurs at
Wi= �̇�	4.4 and Re= �̇d2 /�P	14. Moreover, when we nu-
merically switched to the anti-Keplerian profile by inverting
the sign of the shearing rate �̇, the instability disappeared,
which agrees with the experiment.

We note a useful fact that in the axisymmetric case
�m=0�, the instability threshold involves only axial field
B3=��p /�. In the kinetic theory of dilute polymer solutions
the ratio �p /� is constant and proportional only to polymer
concentration �e.g., �28�; we thank Michael Graham for
pointing this out�. Therefore, the “imposed magnetic field”
B3 is stable even when both polymer viscosity and relaxation
time are shear-thinned by the flow. In the nonaxisymmetric
case �m�0�, however, the instability also depends on the
azimuthal field B1,2. In principle, it may be possible to design
an experiment where such azimuthal field dominates, which
would provide even closer analogy with real accretion disks.

Finally, we comment on previously studied instabilities in
Couette-Taylor flows of polymer fluids, which we can
broadly divide into inertioelastic and purely elastic, see a
review in �29�. In particular, inertioelastic instabilities for a
variety of velocity profiles were characterized in, e.g.,
�30,31�, while the purely elastic instability was studied in
�27,32�. It is crucial to note that in all previous studies of the
inertioelastic instabilities, the chosen velocity profiles were
such that they would become hydrodynamically unstable
even without polymers if the Reynolds numbers were high
enough. In contrast, in our case, the Keplerian-like velocity
profiles are hydrodynamically stable at any Reynolds number
�any rotation rate�.

The purely elastic instability, on the other hand, can exist
even if the Reynolds number is arbitrarily small as long as
the Weissenberg number exceeds certain threshold. The
purely elastic instability is, therefore, not essentially sensi-
tive to fluid inertia effects and, in particular, to the sign of the
velocity shear. In contrast, the inertia effects and the sign of
the velocity shear are crucial in our case. This is demon-
strated experimentally—the instability disappears when the
sign of the velocity shear is inverted. These observations
may suggest that the instability we observed is not analogous
to the previously studied inertioelastic and purely elastic in-
stabilities. This conclusion is consistent with the fact that the
mechanism of magnetorotational instability outlined in the
introduction �see also, �3–5�� is qualitatively different from
the mechanisms of previously studied polymer fluid instabili-
ties, e.g., �27,29–33�.

In conclusion, based on our results, we propose that the
analog of magnetorotational instability can be experimen-
tally studied in viscoelastic flows of polymer fluids. In future
work, we plan to present more detailed characterization of
the observed instability. For a more quantitative analysis and
for closer comparison with the theory, different polymer so-
lutions should be used whose viscosities are not strongly
shear-thinned, the so-called Boger fluids �34�. This work is in
progress.
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